Fun with Ciphers

September 26, 2010

0.1 Monoalphabetic (Substitution) ciphers

- A "monoalphabetic" cipher means that the same cipher alphabet is used throughout the substitution.
- To encode a message with this kind of cipher, replace the "Original" letter with the "Encoded" letter from the key.
- To decode a message, do the opposite: replace the "Encoded" letter with its corresponding "Original" from the key.

1. Consider one example of a key for a monoalphabetic cipher

Letter:	\mathbf{A}	В	\mathbf{C}	D	\mathbf{E}	\mathbf{F}	\mathbf{G}	Η	Ι
Substitute:	Z	Y	X	W	V	U	Т	S	R
Letter:	J	K	L	\mathbf{M}	N	О	P	\mathbf{Q}	R
Substitute:	Q	Р	О	N	M	L	K	J	I
Letter:	S	\mathbf{T}	U	\mathbf{V}	\mathbf{W}	X	Y	\mathbf{Z}	-
Substitute:	Н	G	F	E	D	С	В	Α	-

(a) Do you see a pattern in how this key is organized?

(b) Use the key on the previous page to decode the message below:

FXOZNZGSXRIXOV

(c) Create your own monoalphabetic cipher key below

(Remember to only use each letter once in the "Substitute" row)

Letter:	A	В	C	D	\mathbf{E}	F	G	Н	Ι
Substitute:									
Letter:	J	K	\mathbf{L}	M	N	О	P	Q	R
Substitute:									
Letter:	S	\mathbf{T}	U	\mathbf{V}	\mathbf{W}	X	Y	\mathbf{Z}	-
Substitute:									-

i. Use the key to encode a message and pass it over to your partner to decode.

Encoded message:

Decoded message (let your partner decode):

0.2 Caeser cipher

The simplest of monoalphabetic ciphers is the Caesar (or shift) cipher. In this cipher, the key is just a "shifted" alphabet.

1. This is an example of a Caesar cipher

Letter:	A	В	\mathbf{C}	D	\mathbf{E}	\mathbf{F}	\mathbf{G}	H	Ι
Substitution:	Е	F	G	Н	I	J	K	L	М
Letter:	J	K	\mathbf{L}	\mathbf{M}	N	О	P	Q	R
Substitution:	N	О	Р	Q	R	S	Т	U	V
Letter:	S	\mathbf{T}	U	\mathbf{V}	\mathbf{W}	X	Y	\mathbf{Z}	-
Substitution:	W	X	Y	Z	A	В	С	D	-

Notice that the end of the alphabet "wraps around" to the beginning, so when we reach the end of the alphabet, we begin again.

The shift of this cipher is "+4." Each letter in the original text is replaced by the letter which comes 4 after it.

- (a) Use the key above to encode your name:
- (b) Let your partner decode:

(c) Fill in the key for a Caesar cipher with a shift of +7:

Letter:	A	В	Ĉ	D	\mathbf{E}	F	G	Н	Ι
Substitution:									
Letter:	J	K	\mathbf{L}	\mathbf{M}	N	О	P	Q	\mathbf{R}
Substitution:									
Letter:	\mathbf{S}	\mathbf{T}	U	\mathbf{V}	\mathbf{W}	X	Y	\mathbf{Z}	-
Substitution:									-

Use your key above to decode the following message:

FVBCLNVAPA

0.3 Using Frequency of Letters to Decode

- 1. Knowing how frequently various letters of the alphabet are used in a text can help one decode an en encryption. What letter(s) do you think are encountered most often in a long text? Make a guess (or several guesses)
- 2. Below is the graph showing how often certain letters occur in typical English language text

Image adapted from http://en.wikipedia.org/wiki/File:English_letter_frequency_(alphabetic).svg

(a) How can we use this graph to analyze a shift or other substitution cipher?

(b) Cara received an encrypted message that was a thousand letters long. She counted up how many times each letter occurred in the text. Below are the top 5 occurring letters. Use the graph above to try to match the encoded letter to the letter it is substituting from the original text

Encoded Letter	How many?	Decoded Letter
G	127	
M	91	
Р	82	
L	75	
R	70	

(c) Do you think the frequency method would work for short messages (e.g., 50 letters)? Why or why not?

3. Count up how many times each letter occurs in the following message:

KI	ŦΟ	BI	CO	MI	30	DV	VO	CC	CK(QС
Letter:	A	В	C	D	\mathbf{E}	F	G	Н	Ι	
# in text:										
Letter:	J	K	\mathbf{L}	\mathbf{M}	N	О	P	Q	R	
# in text:										
Letter:	S	\mathbf{T}	U	V	W	X	Y	\mathbf{Z}	-	
# in text:									-	

(a) What letter occurs most often?

(b) If we match that letter with E in a shift (Caeser) cipher, what is the shift?

(c) Use your cipher wheel to decode the secret message from the previous page:

KFOBICOMBODWOCCKQO

(d) Without knowing that this a shift cipher, would you still be able to decode as quickly? Why or why not?

0.4 Pigpen cipher

Image adapted from: http://www.borderschess.org/Freemason.gif

1. Encode the following message using Pigpen cipher ${\rm ENCRYPTION}$

2.	Write your own message to you they can decode it!	r partner	using	this	cipher,	and	see	if
	Encoded message:							
	Decoded message:							

0.5 Rail Fence Cipher

Here is how we can encode the phrase WHO GOES THERE using the Rail Fence cipher

 \bullet First, make an outline of the zig-zag pattern for the number of letters that are in your message

(WHO GOES THERE has 12 letters)

_				_				_		
	_		_		_		_			_
		_				_			_	

• Arrange the letters a zig-zag pattern on three lines:

$\underline{\mathbf{W}}$				<u>O</u>				<u>H</u>			
	<u>H</u>		\underline{G}		$\underline{\mathbf{E}}$		<u>T</u>		<u>E</u>		$\underline{\mathbf{E}}$
		<u>O</u>				<u>S</u>				<u>R</u>	

• Then, the encoded phrase is written out left-to-right, top-to-bottom:

WOHHGETEEOSR

1. Use the Rail Fence cipher to encode the message

I WILL BE THERE SOON

- (a) What will the encoded text read?
- 2. Decoding Rail Fence cipher
 - (a) The algorithm:
 - i. Count the number of letters in the message.
 - ii. Make an outline of the zig-zag pattern like we did in the example above for the number of letters in the message
 - A. Fill in the top row first
 - B. Then fill in the middle row
 - C. Finally, fill in the third row
 - iii. Read the message, inserting spaces where necessary
 - (b) Decode the following message that was encoded with the Rail Fence cipher:

IEHTLVMTEAISOAMC

- i. How many letters are in the message?
- ii. Fill in the decoding outline below:

-		_						
					_	_	_	

iii. Write out the original message below:

3. (Challenge problem)

The following message was written using a (non-Caesar) monoalphabetic substitution cipher. Look at the structure. Can you decode the message?

TULS CKMTUOKC,
BUANEWU RLNH!
-CDLOOEO

Homework

• Learn about one more cipher, or design one of your own. Come next week with a message encrypted with that cipher and a key to decode it.